<u>Optical Electron</u> <u>Polarimetry</u>

T.J. Gay University of Nebraska

The Problem: the CEBAF Spin Dance

J.M.Grames *et al.*, Phys. Rev. Spec. Top. Acc. Beams **7**, 042802 (2004)

- Mott: 1%
- Möller A: 4%
- Möller B: 1%
- Möller C: 1%
- Compton: 3%

<u>5 MeV State-of-the-Art Theory is carried out</u> <u>for the CEBAF Mott Polarimeter!</u>

In 1956, with the goal of improving thermonuclear weaponry, Noah Sherman uses the UNIVAC, a highspeed electronic digital computer with tens of kilobytes of memory, to calculate the Mott scattering analyzing power. These calculations, which quote an accuracy of 1%, assume

- A point-like nucleus
- No K-shell (or any other) electrons in the target
- No QED effects, e.g., bremstrahlung
- Spherical extensions by Ugincius (1964), Motz (1970)

Exchange excitation of atomic fluorescence

Dayhoff (<1956)

The general electron optical polarimeter equation

 $P_3 \rightarrow$ Electron polarization in the direction of the emission direction

 $P_1 \rightarrow$ Analyzing Power

 $P_2 \rightarrow$ Validity of the kinematic assumptions

Target	Transition	$\begin{array}{c} E_t \\ (eV) \end{array}$	$\stackrel{E_c}{(eV)}$	First cascading state	$\sigma_{\rm max}~(10^{-19}~{\rm cm}^2)$	γ	β	A (threshold)
He	$3^{3}P \rightarrow 2^{3}S$ (3889 Å)	23.00	23.59	4 ³ S ^a	7.0 (Ref. [13])	0.5000	-0.3333	0.4390
Ne	$3 {}^{3}D_{3} \rightarrow 2 {}^{3}P_{2}$ (6402 Å)	18.55	19.66	4 ³ <i>P</i> ^o ₂	91 (Ref. [14])	0.6663	0.2230	0.7315
Ar	$4^{3}D_{3} \rightarrow 3^{3}P_{2}$ (8115 Å)	13.07	13.90	3 <i>d</i> ₃	260 (Ref. [15])	0.6667	0.2222	0.7317
Kr	$5^{3}D_{3} \rightarrow 4^{3}P_{2}$ (8112 Å)	11.44	12.11	3 <i>d</i> ₃	120 ^b (Ref. [16])	0.6214	0.2768	0.6959
Xe	$6 {}^{3}D_{3} \rightarrow 5 {}^{3}P_{2}$ (8819 Å)	9.72	9.94	5 ³ F ^o ₄	280 ^b (Ref. [16])	0.6322	0.3098	0.7080

TABLE I. Polarimetric transitions for the noble gases (see text). Values of γ , β , and A (threshold) are taken from Refs. [5] and [9].

^aThe 3 ³D state decays almost exclusively to the 2 ³P state (see text).

^bExtrapolated to zero target pressure.

Advantages of the Optical Method

- Larger analyzing power (>2/3 for the neavy noble gases vs.
 0.4-0.5 for Mott scattering)
- Omnidirectional
- Compact
- Absolute

<u>M. Pirbhai et alii, RSI 84, 053113 (2013)</u>

<u>Skeletons</u>

- Low efficiency compared with Mott scattering
- Rogue gas loads
- Cascades
- Energy dependence of efficiency ⊕ energy dependence of polarization within the beam width
- Hanle depolarization
- Pressure dependence of the Stokes
 parameters

POLO @ MAMI

- Used in 2004 with an effusive argon target and deceleration from 50 keV of the beam to be measured.
- Measured P_e with a precision of < 2%
- Very high backgrounds
- "Self calibration" not attempted
- B.Collin *et al.*, NIM A **534**, 361 (2004)

0.0

Electron energy (eV)

< 100 s acquisition time